On the Use of Underspecified
Data-Type Semantics for
Type Safety in Low-Level Code

Hendrik Tews!, Marcus Volp?, Tjark Weber?

!Technische Universitat Dresden, Germany

2Uppsala University, Sweden

Systems Software Verification Conference, November 29, 2012

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 1/ 30

Introduction

[Jele}

Motivation

Find a common denominator in

» Gurevich and Huggins ASM semantics of C
» Norrish's C++ semantics in HOL4

» C semantics in |4.verified

» C++ semantics in VFiasco/Robin

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 2/30

Introduction

[Jele}

Motivation

Find a common denominator in

» Gurevich and Huggins ASM semantics of C
» Norrish's C++ semantics in HOL4

» C semantics in |4.verified

» C++ semantics in VFiasco/Robin

They all encode typed values in an untyped, byte-wise organised memory

to_byte : V. — byte list
from_byte : byte list — V

> V are the values of some type
> from_byte might fail on byte lists that do note represent a value from V
> the object encoding and the domain of from_byte is usually not specified

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 2/30

Introduction

[Jele}

Motivation

Find a common denominator in

» Gurevich and Huggins ASM semantics of C
» Norrish's C++ semantics in HOL4

» C semantics in |4.verified

» C++ semantics in VFiasco/Robin

They all encode typed values in an untyped, byte-wise organised memory

to_byte : V. — byte list
from_byte : byte list — V

> V are the values of some type
> from_byte might fail on byte lists that do note represent a value from V
> the object encoding and the domain of from_byte is usually not specified

Underspecified data-type semantics refers to this kind of semantics

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 2/30

Introduction

Summary of the talk / paper
Underspecified data-type semantics can detect type errors

» from_byte fails on objects of the wrong type

Main questions

» Which type errors can be detected?
» Under which preconditions?

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 3/30

Introduction

0e0

Summary of the talk / paper

Underspecified data-type semantics can detect type errors

» from_byte fails on objects of the wrong type

Main questions

» Which type errors can be detected?
» Under which preconditions?

This paper makes progress on the topic, providing partial answers

» describe external state-dependent encodings
for detecting most subtle type errors

» trade-off between

» complexity of the object encodings
> and the different kinds of type errors

» sufficient conditions on the encoding functions
for detecting certain type errors

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 3/30

Introduction
[e]e] J

Outline

v

Background / Basics

» Type Errors

v

Stronger Object Encodings
» Type Sensitivity

Conclusion

v

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 4 /30

Basics

@000000

Underspecification

A function f is underspecified if

> its precise mapping on values is not known

» for partial f: its domain is not known

Technically,

> let F be a suitable set of candidate functions
> choose f € F arbitrarily but fixed
> - P(f) only if FVf € F. P(f)

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 5 /30

Basics

0O@00000

How to detect type errors
with underspecified data-type semantics

Consider bool

s1: false «+— 0x00 true <— 0x01
dom(from_byte,) = {0x00, 0x01}
sy: false <— 0x02 true <— 0x03
dom(from_byte,) = {0x02, 0x03}
> S= {51, 52}
» from_byte can read whatever to_byte wrote, because the choice s € S is fixed

boolean b = true; *(p + x) =y

> if y writes something > 0x02, from_byte; will fail
> otherwise from_byte, will fail
» proof assistant cannot prove normal program termination

S detects type errors

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 6 /30

Basics

[e]e] le]elele)

Type checking capabilities can easily get lost

Consider unsigned and void *. Assume

» unsigned can represent everything from 0 to 232 — 1
> you can cast between unsigned and void * without loosing bits

> void * fits in 4 bytes

from_byte’%* must be total on lists of length 4

> because of cardinality reasons
> every 4 bytes form a valid object representation

» no type checking

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 7/30

Basics Type Errors
0O00@000

What is all this good for?

type checkers can automatically detect all type errors

while underspecified data-type semantics can detect some type errors
only during verification

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 8 /30

Introduction Basics Type Errors oding T
0000000

What is all this good for?
type checkers can automatically detect all type errors
while underspecified data-type semantics can detect some type errors
only during verification
but not for low-level code, which

» contains its own memory allocation
» must break the type system for specific hardware registers
> manages the virtual address mapping of itself

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 8 /30

Introduction Basics e Errors oding; T
000 [e]e]e] Jolole} ole 5

What is all this good for?

type checkers can automatically detect all type errors

while underspecified data-type semantics can detect some type errors
only during verification

but not for low-level code, which

» contains its own memory allocation
must break the type system for specific hardware registers
> manages the virtual address mapping of itself

v

For low level code

> type correctness depends on functional correctness
» simple type correctness properties are undecidable
> there exists no static type checker

Verification of low-level code necessarily includes some type checking

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 8 /30

Basics

0O000e00

Background for this talk

4 R
statement and expression semantics

& y J
‘ typed values (e.g., —559038737im)

4 R

s.to_byte
l data—type semantics

L ‘ s.from_byte)
Y byte lists (e.g., [Oxde, Oxad, Oxbe, Oxef])

[memory model }

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 9/30

0000000

General approach

possible data—type semantics

non—checking

" required for
type safety

encoding used by targeted compiler

Underspecified Data-Type Semantics SSV 2012 10 / 30

Basics

0O00000e

Semantic Structures

Definition (Semantic structure)
A semantic structure for a type T is a tuple (V, A, size, to_byte, from_byte)
with

V' set of values

A set of addresses A C N

size size of object encodings (in bytes)
to_byte V x --- — byte list X ---
from_byte byte list x --- — V

such that

length(to_byte(v,...)) = size
from_byte(to_byte(v,...),...) = v

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 11 /30

Outline

Type Errors

Underspecified Data-Type Semantics SSV 2012 12 /30

Type Errors

@00

Type-Error Classification |

1. Unspecified memory contents

» arbitrary, uninitialised values

2. Constant values
3. Object of different type

> a read of type T finds a (complete) value of type U
» implicit cast

> read inactive member of a union

> read after wrong pointer arithmetic

4. Parts of valid objects

> a read of type T finds some bytes of an object of type U
> copy one byte from an U-object into a T-object

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 13 /30

Type Errors S 1coding;
0e0

Non-trivially copyable Data in C++

Trivially copyable data

> can be copied with memcpy

» afterwards the destination holds the same value as the source

Non-trivially copyable data

> might have a constructor/destructor that ensures some global invariant
> a virtual function table that cannot be copied with memcpy

» such types cannot be copied with memcpy

all live objects — +—=(C_ >—" O C e

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 14 / 30

Type Errors

[ele] J

Type-Error Classification |l

5. Bitwise object copies

» copy at least one bit of a valid object

> restore a backup copy of some object at the same address

all live objects — +—=(C_ >X—" G and CO—> e

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 15 / 30

Stronger Encodings

Outline

Stronger Onject Encodings

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 16 / 30

Stronger Encodings

[Jeele]e}

Address dependent encodings

Enhance semantic structures with addresses
V' set of values
A set of addresses A C N
size size of object encodings (in bytes)
to_byte V. x A — byte list
from_byte byte list x A — V

such that
length(to_byte(v,a)) = size
from_byte(to_byte(v,a),a) = v

SSV 2012

17 / 30

Stronger Encodings

[Jeele]e}

Address dependent encodings

Enhance semantic structures with addresses

V' set of values
A set of addresses A C N
size size of object encodings (in bytes)
to_byte V. x A — byte list
from_byte byte list x A — V

such that

length(to_byte(v,a)) = size
from_byte(to_byte(v,a),a) = v

Can detect bitwise object copies (class 5)

» if source and destination have a different address

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 17 / 30

Stronger Encodings

O®000

External-state dependent encodings

Outline of the next slides

> error detection is easy, if some part of the object remains unchanged
» unchanged part could contain hash

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 18 / 30

Introduction 3 Stronger Encodings

O®000

External-state dependent encodings

Outline of the next slides

> error detection is easy, if some part of the object remains unchanged
» unchanged part could contain hash

> 1 unchanged bit suffices
> enrich semantic structures to ensure that there is always 1 additional bit

> 1 free bit suffices to protect everything

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 18 / 30

Stronger Encodings

00e00

1 bit per object is enough

Consider {s2 | a€ A,v € V} such that

> they use the same object encoding, except for the first bit
> for the first bit: s2.to_byte(v',a’) =1 iffa=a and v =1V
> s2.from_byte fails if the first bit is different

Assume that an object at address a is changed

> the first bit remains intact

the remaining bits encode v
sZ.from_byte will fail if the first bit is 0
s2,.from_byte will fail if the first bit is 1

vV v.v Yy

regardless where the bits for v come from

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 19 / 30

Introduction rors Stronger Encodings

[e]e]e] e}

Object encodings with external state

Enhance semantic structures with protected bits

V' set of values
A set of addresses A C N
size size of object encodings (in bytes)
protected_bit A — BA
to_byte V x A — byte list x bit
from_byte byte list x A x bit — V

> if protected_bit is defined,
one bit of the object representation is to be stored there

memory model must be suitably adapted
problems if protected bit is already in use (wait for next slide)

the result of protected_bit is completely unspecified

vV vVv.vyYy

need to overwrite the complete memory to overwrite the protected bit

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 20 / 30

Introduction 3 Stronger Encodings

[e]e]ele]]

Ensure the protected bit is unused

Restrict the choice of semantic structures

s.protected_bit is defined for at most one address

have to choose one s' for each primitive type T

>
>
> choose such that there is one protected bit for at most one primitive type T
> have to deal with at most one protected bit at any time

»

adapt memory model to silently exchange the protected bit with a free bit

One free bit suffices to protect all objects of all types

» for every primitive type T, every address a and every bit address ba,
there is a choice of semantic structures for the primitive types, such that

s .protected_bit(a) = ba

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 21 /30

Outline

Type Sensitivity

ied Data-Type Semantics SSV 2012 22 /30

Introduction 3 S nee g Type Sensitivity

[Jelelele]

Type sensitivity

Definition (Type Sensitivity)
The set ST of semantic structures for T is
type sensitive with respect to a class C of type errors

if normal termination implies that no T-object was affected by errors in C.

Type sensitivity permits to distinguish between

» sufficient conditions on the semantics S7, and
> the construction of ST

> additional assumptions necessary for the verification

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 23 /30

Introduction 3asics cC g Type Sensitivity

O@000

Visible addresses

L a’+s.size

a’ :
T = =
a

Address a is visible in s and s’ but not in s”

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 24 /30

Introduction < nee g Type Sensitivity

Type sensitivity for unspecified memory

Lemma
Assume that

> for every visible address a
there is a semantic structure s € ST and an address a’ € s.A such that
a <a< a +s.size and
for every [bo, . . ., bsize—1]
there is a b, such that
> s.from_byte([bg,...,b, ..., bsze_1]) = undef
Then ST is type sensitive wrt. unspecified memory contents (Class 1).

vV v.v Yy

lbo |b]]

memory F-7 by [b] ==
a’ a

a’+s.size

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 25 /30

Type Sensitivity
[e]e]e] e}

Type sensitivity for bitwise copy

v encoded with s memory content

%\

1 111

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 26 / 30

Introduction 3asics 1CC g Type Sensitivity

[e]e]e] e}

Type sensitivity for bitwise copy

v encoded with s memory content v encoded with s’

%\W

bl

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 26 / 30

Introduction 3 S nce Type Sensitivity

[e]e]e] e}

Type sensitivity for bitwise copy

Lemma
Assume that

» for every structure s € ST, v € 5.V and every visible address a
there exists a semantic structure s' € ST such that

s and s’ differ only in to_byte and from_byte and

for every byte list bl, comprising s.to_byte(v,...),

s'.from_byte(bl') = undef, where bl' equals bl but with
s'.to_byte(v,...) substituted for s.to_byte(v,...).

Then ST is type sensitive wrt. bitwise object copies (Class 5).

vV V. vY

v encoded with s memory content v encoded with s’

%\‘W

bl

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 26 / 30

Introduction S 1CC g Type Sensitivity

[e]e]ele] J

Type sensitivity for bitwise copy Il

Assumptions are impossible for the case

vencoded with s [N] memory content
by
m
([T

because s’.from_byte(s’.to_byte(v,...),...) must be equal to v

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 27 / 30

juction 3asics ors nee g Type Sensitivity

[e]e]ele] J

Type sensitivity for bitwise copy Il

Assumptions are impossible for the case

vencoded with s [N] memory content
by
m
([T

because s’.from_byte(s’.to_byte(v,...),...) must be equal to v

With external state dependent encodings
there is always one original bit left

vencoded with « [N T memory content
b
\%

(LCTITII -

unless the whole memory is overwritten.

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 27 / 30

Conclusion

Outline

Conclusion

derspecified Data-Type Semantics SSV 2012 28 / 30

Introduction

Conclusion
o0

Conclusion

Underspecified data-type semantics

> can detect type errors
> verification of low-level code necessarily contains some type checking
» inspired by C/C++, applicable to other languages as well

Introduce

> external-state dependent object encodings
> type sensitivity

Trade-off between

» more difficult classes of type errors

> the complexity of the semantics for detecting these errors

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 29 / 30

Conclusion
oe

Disclaimer

Notion of type error depends on

> the language

> the verification goals

External-state dependent encodings

» might not be well-suited for verification

Tews, Volp, Weber Underspecified Data-Type Semantics SSV 2012 30/ 30

	Introduction
	Background / Basics
	Type Errors
	Stronger Onject Encodings
	Type Sensitivity
	Conclusion

