Formulas Prop(Lambda(S)) or V
Require Export modal_formulas.
Section Plain_prop_mod.
Variable V : Type.
Variable L : modal_operators.
Plain propositional or modal formulas
Used in the proof of 5.6
Definition plain_prop_or_mod_formula : set (lambda_formula V L) :=
union prop_form modal_form.
Definition plain_prop_mod_subst(subst : lambda_subst V L) : Prop :=
∀(v : V), plain_prop_or_mod_formula (subst v).
Lemma plain_prop_mod_id_subst : plain_prop_mod_subst id_subst.
Lemma plain_prop_mod_subst_update :
∀(v_eq : eq_type V)(sigma : lambda_subst V L)
(v : V)(f : lambda_formula V L),
plain_prop_or_mod_formula f →
plain_prop_mod_subst sigma →
plain_prop_mod_subst (function_update v_eq sigma v f).
End Plain_prop_mod.
Implicit Arguments plain_prop_or_mod_formula [V L].
Implicit Arguments plain_prop_mod_subst [V L].
union prop_form modal_form.
Definition plain_prop_mod_subst(subst : lambda_subst V L) : Prop :=
∀(v : V), plain_prop_or_mod_formula (subst v).
Lemma plain_prop_mod_id_subst : plain_prop_mod_subst id_subst.
Lemma plain_prop_mod_subst_update :
∀(v_eq : eq_type V)(sigma : lambda_subst V L)
(v : V)(f : lambda_formula V L),
plain_prop_or_mod_formula f →
plain_prop_mod_subst sigma →
plain_prop_mod_subst (function_update v_eq sigma v f).
End Plain_prop_mod.
Implicit Arguments plain_prop_or_mod_formula [V L].
Implicit Arguments plain_prop_mod_subst [V L].